Technical Specifications

WaterWorld 48-6500

Specifications of the WaterWorld 48-6500 lithium battery are listed below. For more information please visit:

www.ww-el.com

electrify your world

General Features			
Net capacity	6500 Wh		
Nominal voltage	51.2 V		
Final charging voltage	58.4 V		
Final discharging voltage	43.2 V		
Maximum discharge rate	110 A		
Weight	60 kg		
Dimensions (LxBxH)	650 mm x 255 mm x 215 mm		
Volume	35.6 L		
Battery chemistry	Lithium iron phosphate (LFP) LiFePO4		

Use Information				
Ambient temperature, discharging	-10°C up to +45°C			
Ambient temperature, charging	-2°C up to +40°C			
Ambient temperature, storage	-25°C up to +55°C			
Typical storage time at 50% SOC	40 weeks without any load (battery turned off)			
Max connections	Up to 1 Series 4 Parallel			
Max quick charge	80 A			
Protection class	IP65			
Rattery Composition				

Battery Composition		
Battery enclosure material	Aluminium	
Cell type	Cylindrical	
Capacity per cell	6 Ah	
Nominal voltage per cell	3.2 V	
Cell connection	16S 22P	

Information System in Combination with WW Drivetrain			
Accurate SOC presentation	Yes		
Battery status indicator	Yes		
Error identification	Yes		

Battery Management and Safety				
On-off switch	Yes			
Cell balancing	Yes			
High current and short-circuit protection	Yes			
Deep discharge protection	Yes, cut off at 41.6 V			
Protection against polarity reversal	Yes			
Individual cell string voltage monitoring	Yes			
Current interruption device (CID) for each cell	Yes			
Safety vent for each cell	Yes			
Cell temperature monitoring	Yes			
Temperature monitoring of battery electronics	Yes			
Low temperature shut off	Yes			
High temperature shut off	Yes			

Lifetime Data			
Cycle lifetime	>4000 cycles with 80% discharge depth at 25 °C to capacity loss of 20%		
Average annual capacity loss	Approximately 2% at 25°C ambient temperature		
Dougle by a series of the seri			

Benchmark Information		
Energy density (weight)	108 Wh/kg	
Energy density (volume)	182 Wh/L	
Power density (weight)	108 W/kg	
Power density (volume)	182 W/L	

^{*}Specifications listed in this data sheet may change for the final production version